Identifying Unknowns: A challenge for Metabolomics

Jeevan K. Prasain, PhD Department of Pharmacology and Toxicology, UAB jprasain@uab.edu

Outline

- Introduction
- How to interpret LC-MS and MS/MS data.
- Identification of some conjugated metabolites.
- Conclusions

Introduction

- Identification of metabolites (lipids or any other metabolites) at a molecular level presents a great challenge due to their structural diversity (isobars and isomers) and dynamic metabolism.
- Considering the number of metabolites is >2000,000, there is a lack of commercial analytical standards (only a few thousands available) or comprehensive databases.
 - Note that there is the opportunity to make specific metabolite standards through the NIH Common Fund
 - Go to http://metabolomicsworkbench.org
- Inclusion of many artifacts in database.
- Structural complexity of metabolites.
- Low concentrations and difficult to isolate.

Majority of metabolites are yet to be identified; LC-MS and NMR are the most commonly used analytical techniques for metabolite identification

Adapted from Moco et al., Trend in Analytical Chemistry, 2007

Keys to identifying chemical structures by mass spectrometry

- Combination of the following:
 - Retention time in LC
 - Accurate mass
 - Isotope distribution
 - MS/MS product ions of a precursor ion

Metabolite identification workflow

Platform to process untargeted metabolomic data

- XCMS (developed by the Siuzdak Lab at the Scripps Research Institute) Online, is a web-based version that allows users to easily upload and process LC-MS data. It provides links to METLIN database and produces a list of potential metabolites.
- METLIN (developed by the Siuzdak Lab.) is a metabolite database for metabolomics containing over 64,000 structures and it also has comprehensive tandem mass spectrometry data on over 10,000 molecules.

LCMS-based metabolomics

- Detection of intact molecular ions [M+H]⁺/[M-H]⁻ is possible with soft ionization such as ESI
- High mass accuracy of many instruments (<5 ppm, 0.0005%) helps identify isobaric compounds
- Enables the separation of complex mixtures and identification of molecular weight of pure compounds
- Substructures of unknown metabolite may be proposed on the basis of LC retention time, exact mass measurement and interpretation of signature ions upon MS/MS of a precursor ion

Points to be considered in LC-MS analysis

- Choice of ionization mode- ESI Vs APCI +ve/-ve modes
- Choice of eluting solvent- methanol Vs acetonitrile
- Additives/pH in mobile phase
- Molecular ion recognition (adduct formation)
- Chromatographic separation- stationary phase C8, C18..
- Evaluation of spectral quality- what to look for in a good quality spectra

Adduct formation might complicate metabolite identification

Nielsen et al., J Nat Prod. 2011

Use of isotope pattern in identification of metabolites

- Very close in mass, but different in isotope patterns.
- Isotope ratio outlier analysis (IROA)
 - Used for LC-MS (and possibly GC-MS)
 - Designed to distinguish between metabolites of interest and background signals
 - Requires uniform labeling at the 95% and 5% ¹³Cenrichment levels

Pairing the 5% and 95% ¹³C-labeling distinguishes artifactual molecules

Courtesy of IROA Technologies

Value of knowing the carbon

Isotopic pattern intensity of [M-H]⁻ and ¹³C and [M-H+2]signals indicates the number of carbons and hetero atoms in the molecular ion

Comparison of product ions between known and unknown can help elucidate the unknown

Prasain et al., 2003; Boersma et al., 2003

Good chromatographic separation and accurate mass indicate a number of diastereoisomer/enantiomer of PGF2alpha in worm extracts

ESI-MS/MS of the [M-H]- from PGF2a m/z 353 using a quadrupole mass spectrometer

Fragmentation scheme of PGF2a [M-H]⁻ m/z 353

m/z 309

Ions m/z 309, 291, 273 and 193 are indicative of F2-ring

Only in chiral normal phase column,PGF2alpha and its enantiomer can be distinguished

Great similarities between *C. elegans* and Cox dKO pups PGF2 profile

Ions break at weakest points; difference in O- and C-glucoside fragmentation

Prasain et al., J. Agric. Food Chem., 2003

Identification of unknowns: comparing the MS/MS spectra of the known compound (puerarin)

Nitrogen rule-Odd number of nitrogens = odd MW Even nitrogens = even MW

Accurate mass (<5 ppm), fragmentation patters help propose putative structures

Prasain et al., unpublished results

Library search for eicosanoid http://www.lipidmaps.org/

LIPID MAPS -- LIPID Metabolites And Pathways Strategy

Contact | Discussion | News | Publications | Site Map

LIPID Metabolites And Pathways Strategy

About Lipid Classification Standards Experimental Data Databases Pathways Tools Protocols Home

LMSD: Lipid classification search results

Fatty Acyls [FA] (W) --> Eicosanoids [FA03]

LM_ID	Common Name	Systematic Name	Formula	Mass
LMFA03000001	8(9)-EpETE	(+/-)-8(9)-epoxy-5Z,11Z,14Z,17Z- eicosatetraenoic acid	C ₂₀ H ₃₀ O ₃	318.22
LMFA03000002	11(12)-EpETE	(+/-)-11(12)-epoxy-5Z,8Z,14Z,17Z- eicosatetraenoic acid	C ₂₀ H ₃₀ O ₃	318.22
LMFA0300003	14(15)-EpETE	(+/-)-14(15)-epoxy-5Z,8Z,11Z,17Z- eicosatetraenoic acid	C ₂₀ H ₃₀ O ₃	318.22
LMFA0300004	17(18)-EpETE	(+/-)-17(18)-epoxy-5Z,8Z,11Z,14Z- eicosatetraenoic acid	C ₂₀ H ₃₀ O ₃	318.22
LMFA03000005	11(R)-HEDE	11R-hydroxy-12E,14Z-eicosadienoic acid	C20H36O3	324.27
LMFA0300006	17R,18S-EpETE	17R,18S-epoxy-5Z,8Z,11Z,14Z- eicosatetraenoic acid	C ₂₀ H ₃₀ O ₃	318.22
LMFA0300008	15(R)-HEDE	15R-hydroxy-11Z-13E-eicosadienoic acid	C ₂₀ H ₃₆ O ₃	324.27
LMFA0300009	11S-HEDE	11S-hydroxy-12E,14Z-eicosadienoic acid	C ₂₀ H ₃₆ O ₃	324.27
LMFA03010000	Prostanoic acid skeleton	-	-	-
LMFA03010001	6-keto-PGF1a	6-oxo-9S,11R,15S-trihydroxy-13E- prostenoic acid	C ₂₀ H ₃₄ O ₆	370.24
LMFA03010002	PGF2a	9S,11R,15S-trihydroxy-5Z,13E- prostadienoic acid	C ₂₀ H ₃₄ O ₅	354.24
LMFA03010003	PGE2 (W)	9-oxo-11R,15S-dihydroxy-5Z,13E- prostadienoic acid	C ₂₀ H ₃₂ O ₅	352.22
LMFA03010004	PGD2 (<u>W</u>)	9S,15S-dihydroxy-11-oxo-5Z,13E- prostadienoic acid	C ₂₀ H ₃₂ O ₅	352.22
LMFA03010005	PGA1	9-oxo-15S-hydroxy-10Z,13E- prostadienoic acid	C20H32O4	336.23
LMFA03010006	PGF2a-d4	9S,11R,15S-trihydroxy-5Z,13E- prostadienoic acid (3,3,4,4-d4)	C ₂₀ H ₃₀ D ₄ O ₅	358.27
LMFA03010007	PGD2-d4	9S,15S-dihydroxy-11-oxo-5Z,13E- prostadienoic acid (3,3,4,4-d4)	C ₂₀ H ₂₈ D ₄ O ₅	356.25
LMFA03010008	PGE2-d4	11R,15S-dihydroxy-9-oxo-5Z,13E- prostadienoic acid (3,3,4,4-d4)	C ₂₀ H ₂₈ D ₄ O ₅	356.25
LMFA03010009	PGG2	9S,11R-epidioxy-15S-hydroperoxy-5Z,13E- prostadienoic acid	C ₂₀ H ₃₂ O ₆	368.22

LIPID Metabolites And Pathways

About Lipid Classification Standards Experimental Data Databases Pathways Tools Protocols Home

Structure database (LMSD)

LM ID	LMFA03010025
Common Name	PGF2β
Systematic Name	9R,11R,15S-trihydroxy-5Z,13E-prostadienoic acid
Synonyms	-
Exact Mass	354.24
Formula	C ₂₀ H ₃₄ O ₅
Category	Fatty Acyls [FA]
Main Class	Eicosanoids [FA03]
Sub Class	Prostaglandins [FA0301]
LIPIDBANK ID	XPR1764
PubChem Substance ID (SID)	<u>4265968</u>
KEGG ID	-

Targeted metabolomics: identification of conjugated metabolites (glucuronide/sulfate conjugates/glutathione-GSH)

The loss of anhydrous glucuronic acid (176 Da)the characteristic of all glucuronides

GSH conjugates can be identified with characteristic fragment ions *m/z* 306, 272, 254, 210, 179, 160 and 143 in -ve ion mode

The loss of 80 Da from the parent ion and the presence of *m*/*z* 80 in the product ion spectra indicates aromatic sulfate conjugates

Aliphatic sulfates typically show *m/z* 97 (HSO₄⁻), whereas aromatics show *m/z* 80 (SO₃⁻)

Weidolf et al. Biomed. and Environ. Mass Spec. 1988

Characteristic fragmentation of metabolite conjugates by MS/MS

Conjugate I c	nization mod	e Scan
Glucuronides	pos/nea	NL 176 amu
Hexose sugar	pos/neg	NL 162 amu
Pentose sugar	pos/neg	NL 132 amu
Phenolic sulphate	pos	NL 80 amu
Phosphate	neg	Prec m/z 79, NL 80/98
GSH	Pos/neg	NL 129 amu
GSH	Neg	Prec m/z 272
taurines	Pos	Precursor of m/z 126
N-acetylcysteins	neg	NL 129 amu

NL = neutral loss.

Conclusions

- Identifying uncharacterized metabolites in biological samples is a significant analytical challenge and it requires integrated analytical approaches.
- A well separated metabolite signals in LC-MS/MS is crucial for unambiguous identification of new chemical entity.
- Data processing and data analysis are important for putative identifications.
- The use of high-resolution MS and MSⁿ provides important information to propose structures of fragment and molecular ions.
- Combination of MS with NMR (eg. LC-NMR) is one of the most powerful analytical strategies for structure elucidation of novel metabolites.

Acknowledgements

- Stephen Barnes, PhD (UAB)
- Michael Miller, PhD (UAB)
- Lalita A. Shevde, PhD (UAB)
- Ray Moore (ex-TMPL)
- Landon Wilson (TMPL)
- William P. Jackson (UAB)